1,3-Diaza- $2\lambda^2$ -phosphonia- $4\lambda^4$ -gallatacyclobutane

Richard Oberdörfer, Martin Nieger und Edgar Niecke*

Anorganisch-Chemisches Institut der Universität Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany

Eingegangen am 20. Juni 1994

Key Words: [Amino(imino)phosphane]gallium trichloride adduct / 1,3-Diaza-2λ²-phosphonia-4λ⁴-gallatacyclobutanes / Nickel tricarbonyl complexes

1,3-Diaza- $2\lambda^2$ -phosphonia- $4\lambda^4$ -gallatacyclobutanes

Reaction of amino(imino)phosphanes 1a-c with gallium trichloride results in the formation of 1,3-diaza- $2\lambda^2$ -phosphonia- $4\lambda^4$ -gallatacyclobutanes 3a, b with elimination of chlorotrimethylsilane (1a) or *tert*-butyl chloride (1b, c). The intermediately formed amino(imino)phosphane/Lewis acid adducts R(Me₃Si)NPN(GaCl₃)R' (2, R,R' = tBu, Me₃Si) can be

Die Reaktion von N-silvlierten Amino(imino)phosphanen mit redox-stabilen Halogeniden elektropositiver Elemente ist eine bekannte Route zu viergliedrigen Phosphor-Stickstoff-Element-Heterocyclen^[1]. Primärprodukt der Reaktion ist ein Lewis-Säure/Iminophosphan-Addukt I, das aufgrund seiner hohen Reaktivität schwer faßbar ist und sich in der Regel über eine 1,2-Halogenverschiebung^[2] zum Aminohalogenphosphan II und durch nachfolgende 1,3-Eliminierung von Halogensilan unter Bildung des Heterocyclus III stabilisiert. Ein davon abweichender Reaktionsverlauf ist im Fall der Reaktion mit Aluminium-trihalogeniden dokumentiert^[3], bei der das Lewis-Säure-Iminophosphan-Addukt I auf direktem Weg und unter Erhalt der Koordinationszahl am Phosphor den Heterocyclus IV bildet. Die Möglichkeit, gemäß der Reaktionssequenz $I \rightarrow IV$ zu weiteren Heterocyclen mit koordinativ ungesättigten Phosphorzentren zu gelangen, war der Anlaß zu den Untersuchungen am System Amino(imino)phosphan/Galliumtrichlorid.

In Übereinstimmung mit den Ergebnissen am System Amino(imino)phosphan/Aluminiumtrihalogenid^[3] führt die Umsetzung von Galliumtrichlorid mit dem Amino(imino)phosphan 1a zu einem Lewis-Säure/Base Addukt 2a. das als kristalliner Feststoff isoliert wird. In Lösung zerfällt 2a bei erhöhter Temperatur (>50°) unter Eliminierung von Chlorsilan in das 1,3-Diaza- $2\lambda^2$ -phosphonia- $4\lambda^4$ -gallatacyclobutan 3a als Hauptprodukt der Reaktion. Mit dieser Ringschlußreaktion konkurriert jedoch merklich ein Isomerisierungsprozeß von 2a, der zum Diazaphosphasilacyclobutan-Galliumtrichlorid Addukt 4 führt. Dieses geht möglicherweise aus einer durch die Lewis-Säure (GaCl₃) katalysierten Methylgruppenübertragung hervor. Die Mediatorfunktion von Galliumtrichlorid ist im Fall von Methylsiloxanen wohl dokumentiert^[4]. Im Gegensatz zu 2a sind die aus der Umsetzung von Galliumtrichlorid mit den isolated in the case of compound 2a (R = R' = SiMe₃). A diazaphosphasilacyclobutane-gallium trichloride adduct 4 is formed in a side reaction by isomerization of 2a. Reaction of compound 3b with Ni(CO)₄ gives the corresponding transition metal complex 5. The NMR data and X-ray structures of compounds 2a, 4, and 5 are reported.

2397

Amino(imino)phosphanen 1b, c hervorgehenden Primärprodukte der Reaktion (2b, c) lediglich in Form ihrer Zerfallsprodukte 3a, b faßbar, wobei in beiden Fällen die Abspaltung von *tert*-Butylchlorid zugunsten einer Eliminierung von Chlortrimethylsilan dominiert.

Struktur und Eigenschaften

Die Konstitutionen der Verbindungen 2a, 3a, b und 4 folgen aus dem hochaufgelösten Massenspektrum (Molekülpeak) und den Ergebnissen multinuklearer NMR-Messungen. Die Anwesenheit eines koordinativ ungesättigten Phosphorzentrums in den Verbindungen 2a, 3a, b äußert sich in einer starken Entschirmung des ³¹P-Kerns, die typisch für Diaminophosphenium-Ionen ist^[5]. Hierbei zeigt

Chem. Ber. **1994**, *127*, 2397–2401 © VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1994 0009–2940/94/1212–2397 \$ 10.00+.25/0

das Lewis-Säure/Base-Addukt 2a einen mit dem entsprechenden Aluminiumtrichlorid-Derivat (Me₃Si)₂N-P=N- $(SiMe_3)AlCl_3$ ($\delta = 450^{[3]}$) vergleichbar stark entschirmten ³¹P-Kern ($\delta = 444$). Die Röntgenstrukturanalyse dieser Verbindung (Abb. 1) liefert zwei signifikant unterschiedliche PN-Abstände [PN(1) 159.0(5); PN(2) 163.7(5) pm], deren Mittelwert dem von Aminophosphenium-Ionen (161-162 pm^[5]) entspricht. Bemerkenswert ist die leichte Pyramidalisierung beider Stickstoffatome (Σ N(1) 358.8°; N(2) 358.1°; Abweichung von N(1) [N(2)] aus der Ebene Si-P-Ga [Si-P-Si] -11 [14] pm), die, wie auch die gegenläufige Verdrillung der Ebenen Si(1)-N(1)-Ga(1) und Si(2)-N(2)-Si(3) bezüglich des zentralen NPN-Skeletts (33 bzw. 46°), auf sterische Effekte zurückzuführen ist und damit die Ausbildung eines elektronisch ausgeglichenen 4-Elektronen-3-Zentren-pπ-Bindungssystems erschwert. Die Abstände zwischen den Stickstoffatomen und den peripheren Atomen wie auch der zentrale Bindungswinkel am Phosphoratom [112.9(3)°] zeigen keine Auffälligkeiten.

Mit dem Übergang zur Ringstruktur **3** geht eine signifikante Abschirmung des Phosphorkerns [$\delta = 370$ (**3a**), 356 (**3b**)] einher. Bemerkenswert, insbesondere im Vergleich mit der entsprechenden Aluminiumverbindung P(NSiMe₃)₂. AlCl₂^[3], ist die im Fall der Verbindung **3a** bei Raumtemperatur zu beobachtende Quintett-Aufspaltung des Resonanzsignals als Folge einer Kopplung mit den beiden benachbarten Stickstoffatomen ($J_{PN} = 49$ Hz), die auf eine pseudozylindrische Symmetrie der Silylgruppen zurückgeführt werden kann. Beispiele, in denen aufgrund schneller Rela-

xation mit dem ¹⁴N-Kern die Kopplung zum Phosphor beobachtet wird, sind rar^[6]. Die Konstitution von 4 als einem cyclischen Isomeren von 2a in Form eines 1,3-Diazaphosphasilacyclobutan-Galliumtrichlorid-Adduktes folgt aus der Beobachtung von vier Signalgruppen im ¹³C- und ¹H-NMR-Spektrum im Intensitätsverhältnis 1:1:1:6. Die Nachbarstellung einer Methylgruppe zum Phosphor-Atom äußert sich auch in der Dublettaufspaltung des entsprechenden Resonanzsignals (¹³C-NMR: $\delta = 7.03$, ¹ $J_{CP} = 3.0$ Hz; ¹H-NMR: $\delta = 1.96$, ² $J_{PH} = 8.2$ Hz). Der geringe Betrag für J_{CP} folgt hierbei einem allgemeinen Trend, wonach bei Koordination eines Phosphanzentrums die P-C-Kopplungskonstante abnimmt. Das ³¹P-NMR-Spektrum liefert ein Resonanzsignal bei $\delta = 85$, dessen starke Verbreiterung $(\Delta_{1/2} = 3500 \text{ Hz})$ auf ein Gleichgewicht zwischen 4 und den Dissoziationsprodukten Galliumtrichlorid und Diazaphosphasilacyclobutan hinweist.

Abb. 1. Molekülstruktur von **2a** im Kristall ohne H-Atome. Ausgewählte Atomabstände [pm]: P-N(1) 159.0(5), P-N(2) 163.7(5), Ga-N(1) 195.1(6), Ga-Cl(3) 216.4(2), N(1)-Si(1) 183.1(5). – Ausgewählte Bindungswinkel [°]: N(1)-P-N(2) 112.9(3), Si(1)-N(1)-P 115.0(3), Si(1)-N(1)-Ga 117.5(3), P-N(1)-Ga 126.3(3), P-N(2)-Si(2) 124.3(3), P-N(2)-Si(3) 112.0(3), Si(2)-N(2)-Si(3) 121.8(3)

Die Struktur von 4 im Kristall zeigt ein planares SiN_2P -Gerüst (Abb. 2). In der Ringebene liegen auch die Atome Si(2) und Si(3), deren drei Methylgruppen zueinander in einer ekliptischen Konformation angeordnet sind. Die P-N und Si-N-Abstände [P-N(1) 165.6(4), P-N(2) 165.9(4), Si(1)-N(1) 175.7(4), Si(1)-N(2) 175.4(4) pm] entsprechen typischen Werten zwischen sp²(N)- und sp³(P, Si)-hybridisierten Zentren; die P-Ga-Bindungslänge [235.9(1) pm] kann als eine "normale" Einfachbindung angesehen werden^[7].

Reaktionen

Die formal mit einem Singulett-Carben vergleichbare Bindungssituation der Phosphenium-Ionen hat die Entwicklung in der Chemie dieser koordinativ ungesättigten Phosphorspezies entscheidend stimuliert^[5], wobei allerdings die Chemie der Koordinationsverbindungen bislang weniger im Mittelpunkt des Interesses stand als die der freien Kationen. Insbesondere sind nur vereinzelt Carbonylkom-

Abb. 2. Molekülstruktur von 4 im Kristall ohne H-Atome. Ausgewählte Atomabstände [pm]: Ga-Cl(1) 216.7(2), P-N(1) 165.6(4), P-N(2) 165.9(4), P-C(1) 178.6(5), P-Ga 235.9(1), Si(1)-N(1) 175.7(4), Si(1)-N(2) 175.4(4). – Ausgewählte Bindungswinkel [°]: N(1)-P-N(2) 91.4(2), N(1)-Si(1)-N(2) 85.0(2), P-N(1)-Si(1) 91.8(2), P-N(2)-Si(1) 91.8(2), Ga-P-C(1) 108.9(2), C(2)-Si(1)-C(3) 111.8(3), Si(3)-N(2)-Si(1) 134.8(2)

plexe beschrieben worden, von denen erst einer strukturell untersucht worden ist^[8]. Ein weiterer Vertreter, dessen Struktur aufgeklärt werden konnte, ist der durch Umsetzung von **3b** mit Tetracarbonylnickel zugängliche Komplex **5**.

Die Struktur der Verbindung (Abb. 4) zeigt einen ebenen Vierring mit trigonal-planar koordinierten Phosphor- und Stickstoffzentren. Auffällig ist der im Vergleich zu Phosphan-Komplexen (218-224 pm^[9]) stark verkürzte Ni-P-Abstand [212.3(3) pm], der eine starke σ -Donor/ π -Akzeptor Wechselwirkung des Phosphoratoms mit dem Übergangsmetall anzeigt. Damit verbunden sind eine Schwächung der Ni-C- [181.1(7) bzw. 182.5(7) pm] und eine Stärkung der C-O-Bindungen [110.6(10)-112.4(9) pm]^[10]. Die PN-Abstände [P-N(1) 160.4(8), P-N(2) 161.1(5) pm] wie auch die innercyclischen Winkel [N(1)-P-N(2) 96.5(3), N(1)-Ga-N(2) 76.1(3), P-N(1)-Ga 93.7(3), P-N(2)-Ga 93.6(3)°], entsprechen denen in 1,3-Diaza- $2\lambda^2$ -phosphonia-4 λ^4 -aluminatacyclobutan^[11], wobei der formale Ersatz einer Cl₂Al-Einheit durch den Cl₂Ga-Rest erwartungsgemäß zu einem kleineren endocyclischen Winkel führt.

Im ³¹P-NMR-Spektrum von 5 beobachtet man einen gegenüber der Ausgangsverbindung nur unwesentlich entschirmten Phosphorkern ($\delta = 324$). Die ¹³C-chemische Ver2399

Abb. 3. Molekülstruktur von **5** im Kristall ohne H-Atome. Ausgewählte Atomabstände [pm]: Ni–C(1) 182.5(7), Ni–C(2) 181.1(7), Ni–P(1) 212.3(3), C(1)–O(1) 112.4(9), C(2)–O(2) 110.6(10), P–N(1) 160.4(8), P–N(2) 161.1(5), Ga–Cl(1) 214.6(2), Ga–N(1) 194.7(5), Ga–N(2) 194.4(8). – Ausgewählte Bindungswinkel [°]: Ni–P–N(1) 132.8(2), Ni–P–N(2) 130.7(3), N(1)–P–N(2) 96.5(3), Cl(1)–Ga–Cl(1a) 111.9(1), N(1)–Ga–N(2) 76.1(3), P–N(1)–Ga 93.7(3), P–N(1)–Si(1) 132.4(4), Ga–N(1)–Si(1) 133.9(5), P–N(2)–Ga 93.6(3), P–N(2)–C(5) 144.0(10), Ga–N(2)–C(5) 122.3(9)

Die Arbeit wurde vom Fonds der Chemischen Industrie unterstützt.

Experimenteller Teil

Alle Versuche wurden unter Feuchtigkeits- und Sauerstoff-Ausschluß unter Argon durchgeführt. Die Amino(imino)phosphane $la^{[12]}$, $lb^{[13]}$ und $lc^{[14]}$ wurden nach Literaturangaben erhalten.

NMR: Bruker AMX 300 (³¹P 121.5 MHz, externer Standard 85% H₃PO₄; ¹H 300.1 MHz, externer Standard TMS; ¹³C 75.5 MHz, externer Standard TMS. – MS: Kratos Instruments Concept 1 H, Kratos Instruments, MS 50, VG Instruments VG 12-250 (EI Direkteinlaß). Die angegebenen Massenzahlen beziehen sich auf das jeweils häufigste Isotop eines Elements. – Schmelzpunkte: Bestimmung in abgeschmolzenen Kapillaren mit einem Gerät der Firma Büchi, Flawil, Schweiz. Die Werte sind unkorrigiert.

[Bis(trimethylsilyl)amino](trimethylsilyl)imino]phosphan-Galliumtrichlorid (2a): Zu einer Lösung von 3.78 g (21.5 mmol) GaCl₃ in 15 ml Toluol werden bei 0°C unter Rühren langsam 5.46 g (21.5 mmol) 1a getropft. Der aus der Reaktionslösung nach 2 d bei -30°C ausfallende Feststoff wird aus wenig Toluol umkristallisiert. Ausb. 6.1 g (58%) hellgelbe Kristalle, Schmp. 63-64°C. – ³¹P{¹H}-NMR (Hexan/C₆D₆): δ = 444 (s). – ¹³C{¹H}-NMR (CDCl₃): δ = 5.12 (NSiC₃, 3 C), 2.85 [N(SiC₃)₂, 6 C]. – ¹H-NMR (CDCl₃): δ = 0.572 (d, ⁴J_{PH} = 1.61 Hz, NSiMe₃, 9H), 0.513 [d, ⁴J_{PH} = 1.06 Hz, N(SiMe₃)₂, 18 H]. – C₉H₂₇Cl₃GaN₂PSi₃ (454.6): ber. C 23.78, H 5.99, N 6.16; gef. C 22.93, H 5.87, N 5.98.

4,4-Dichlor-1,3-bis(trimethylsilyl)-1,3-diaza- $2\lambda^2$ -phosphonia- $4\lambda^4$ gallatacyclobutan (**3a**): 4.9 g (28 mmol) GaCl₃, gelöst in 15 ml Toluol, werden bei 0°C mit einer Lösung von 7.7 g (28 mmol) **1a** in 10 ml Toluol versetzt. Nach Erwärmen auf 25°C wird die Lösung 0.5 h unter Rückfluß erhitzt. Die flüchtigen Bestandteile werden

	2a	4	5
Empirische Formel	C ₉ H ₂₇ Cl ₃ GaN ₂ PSi ₃	C ₉ H ₂₇ Cl ₃ GaN ₂ PSi ₃	C ₁₀ H ₁₈ Cl ₂ GaN ₂ NiO ₃ PSi
	454.0	454.0	472.7
Kristalliarbe	farblos	farblos	orange
Kristalidimensionen [mm]	0.70 x 0.70 x 0.80	0.65 x 0.85 x 0.85	0.40 x 0.50 x 0.75
Kristallsystem	orthorhombisch	monoklin	monoklin
Raumgruppe	lba2 (Nr. 45)	$P2_{1}/n$ (Nr. 14)	$P2_{1}/m$ (Nr. 11)
Elementarzelle			
a [A]	18.379(3)	9.024(2)	9.980(3)
b [Å]	18.776(3)	14.634(3)	11.161(3)
c [Å]	12.434(2)	17.415(5)	10.157(3)
β[°]		99.22(2)	116.57(2)
V [nm ³]	4.289(1)	2.270(1)	1.012(1)
Z	8	4	2
$d_{\text{ber.}} [g \text{ cm}^{-3}]$	1.41	1.33	1.55
Diffraktometer	Enraf-Nonius CAD4	Nicolet R3m	Nicolet R3m
Strahlung	ΜοΚα	ΜοΚα	ΜοΚα
λ[Å]	0.71073	0.71073	0.71073
$\mu [\text{mm}^{-1}]$	1.89	1.79	2.67
Temperatur [K]	193	293	293
F (000)	1872	936	476
2 Θ_{max} [°]	50	50	50
mux.	0≤h≤21	-10≤h≤10	-11≤h≤10
	0≤ k ≤22	0≤k≤17	-13≤k≤13
	-14≤l≤14	0≤1≤20	0≤l≤12
gemessene Reflexe	3758	4119	3778
unabhängige Reflexe	3758	3810	1886
beobachtete Reflexe			
mit F>4 σ (F)	3429	2793	1488
verfeinerte Parameter	172	172	105
R	0.045	0.047	0.048
$R_{w}(w^{-1} = \sigma^2(F) + gF^2)$	0.045	0.051	0.053
g g	0.0004	0.0008	0.0007
Restelektronen-			
dichte _{max./min.} [e Å ⁻³]	1.49/-1.51	0.31/-0.41	0.90/-0.93

Tab. 1. Kristalldaten, Datensammlung und Verfeinerung für die Verbindungen 2a, 4 und 5

i.Vak. entfernt, und der Rückstand wird bei 50°C/0.01 Torr sublimiert. Ausb. 4.2 g (43%), Schmp. $53-54^{\circ}$ C. $-{}^{31}P{}^{1}H$ -NMR (Hexan/C₆D₆): $\delta = 370$ (quint, ${}^{1}J_{PN} = 49$ Hz). $-{}^{13}C{}^{1}H$ -NMR (CDCl₃): $\delta = 1.47$ (d, ${}^{3}J_{PC} = 3.8$ Hz). $-{}^{1}$ H-NMR (CDCl₃): $\delta =$ 0.21. - MS (180°C, 70 eV), m/z (%): 344 (6) [M⁺], 329 (100), und weitere Fragmente. $-C_{6}H_{18}Cl_{2}GaN_{2}PSi_{2}$ (346.0): ber. C 20.83, H 5.24, N 8.10; gef. C 20.15, H 5.19, N 7.98.

l-tert-Butyl-4,4-dichlor-3-(trimethylsilyl)-1,3-diaza-2λ²-phos-phonia-4λ⁴-gallatacyclobutan (**3b**): Zu einer Lösung von 5.8 g (33 mmol) GaCl₃ in 20 ml Toluol werden bei 0°C 8.6 g (33 mmol) [*tert*-Butyl(trimethylsilyl)amino][(trimethylsilyl)imino]phosphan (**1b**) getropft. Nach Erwärmen der Lösung auf 25°C werden Toluol und entstandenes Chlortrimethylsilan i.Vak. entfernt. Aus dem Rückstand werden durch Sublimation bei 50°C/0.01 Torr 6.9 g Produkt **3b** erhalten. Ausb. 63%, Schmp. 51–52°C. – ³¹P{¹H}-NMR (He-xan/C₆D₆): δ = 356. – ¹³C{¹H}-NMR (CDCl₃): δ = 56.68 (d, ²J_{PC} = 3.5 Hz, CC₃, 1 C), 33.13 (d, ³J_{PC} = 8.4 Hz, CC₃, 3 C), 1.76 (d, ³J_{PC} = 3.5 Hz, SiC₃, 3 C). – ¹H-NMR (CDCl₃): δ = 1.169 (CMe₃, 9H), 0.241 (SiMe₃, 9H). – MS (180°C, 70 eV), *mlz* (%): 328 (4) [M⁺], 313 (100) [M⁺ – Me], und weitere Fragmente. – C₇H₁₈Cl₂GaN₂PSi (329.9): ber. C 25.48, H 5.50, N 8.49; gef. C 25.14, H 5.28, N 8.13.

2,4,4-Trimethyl-1,3-bis(trimethylsilyl)-1,3-diaza-2-phospha-4silacyclobutan-Galliumtrichlorid (4): Der aus der Darstellung von **3a** verbleibende Rückstand wird einer erneuten Sublimation bei 100°C/0.01 Torr unterworfen. Hierbei erhält man nach Umkristallisation aus Toluol 4.5 g (9.9 mmol) Produkt. Ausb. 35%, Schmp. 92-94°C. - ³¹P{¹H}-NMR (Hexan/C₆D₆): δ = 85 (breit, $\Delta_{1/2}$ = 3500 Hz). - ¹³C{¹H}-NMR (CDCl₃): δ = 7.03 (d, ¹J_{PC} = 3.0 Hz, PC, 1 C), 4.41 (SiC₂, 1 C), 1.81 (d, ³J_{PC} = 2.4 Hz, NSiC₃, 6 C), 1.69 (d, ³J_{PC} = 4.1 Hz, SiC₂, 1 C). - ¹H-NMR (CDCl₃): δ = 1.96 (d, ²J_{PH} = 8.2 Hz, PMe, 3H), 0.71 (SiMe₂, 3H), 0.61 (SiMe₂, 3H), 0.31 (NSiMe₃, 18H). - MS (180°C, 70 eV), *m*/z (%): 437 (3) [M⁺ - Me], 417 (14) [M⁺ - Cl], 278 (18) [M⁺ - GaCl₃], 263 (100), und weitere Fragmente. - C₉H₂₇Cl₃GaN₂PSi₃ (454.6): ber. C 23.78, H 5.99, N 6.16; gef. C 23.24, H 5.97, N 6.03.

[3-tert-Butyl-4,4-dichlor-1-(trimethylsilyl)-1,3-diaza- $2\lambda^2$ -phosphonia- $4\lambda^4$ -gallatacyclobutan-2-yliden]tricarbonylnickel (5): Eine Lösung von 6.2 g (18.6 mmol) **3b** in 15 ml Toluol wird bei -20° C tropfenweise mit 3.2 g (18.6 mmol) Tetracarbonylnickel versetzt. Die Reaktionslösung wird unter Rühren auf Raumtemp. erwärmt und 1 h auf dieser Temp. gehalten. Die Reinigung des Produktes erfolgt durch Umkristallisation aus Toluol. Ausb. 6.6 g (75%) **5**, Schmp. 83–84°C. – ³¹P{¹H}-NMR (Hexan/C₆D₆): $\delta = 324$. – ¹³C{¹H}-NMR (CDCl₃): δ = 191.5 (d, ²J_{PC} = 5.0 Hz, CO, 3 C), 56.64 (NCC₃, 1 C), 32.99 (d, ${}^{3}J_{PC} = 6.9$ Hz, CMe₃, 3 C), 2.02 (d, ${}^{3}J_{PC} = 2.7$ Hz, SiC₃, 3 C). - 1 H-NMR (CDCl₃): $\delta = 1.296$ (CMe₃, 9H), 0.327 (SiMe₃, 9H). - MS (180°C, 70 eV), m/z (%): 414 (1) $[M^+ - 2 CO]$, 386 (10) $[M^+ - 3 CO]$, 313 (83) $[M^+ - Ni(CO)_3]$, 118 (78) [PNSiMe₃⁺], 73 (100) [SiMe₃⁺], und weitere Fragmente. -C10H18Cl2GaN2NiO3PSi (472.6): ber. C 25.41, H 3.84, N 5.93; gef. C 25.23, H 3.67, N 5.71.

Röntgenstrukturanalyse von 2a, 4 und 5^[15]: Eine Zusammenfassung der Kristalldaten. Datensammlung und Verfeinerung findet sich in Tab. 1. Alle Strukturen wurden mit direkten Methoden gelöst. Die Nicht-H-Atome wurden anisotrop, die H-Atome mit einem Reitermodell verfeinert (Full-matrix-least-squares-Verfeinerung). Bei Verbindung 5 sind die Trimethylsilyl- und tert-Butylgruppen fehlgeordnet [s.o.f. = 0.54(1)]. Bei 2a wurde die absolute Struktur bestimmt [$\eta = 1.00(4)$]. Es wurden empirische Absorptionskorrekturen mit den Programmen XABS^[16] (2a) und DI-FABS^[17] (4 und 5) durchgeführt. Strukturlösung und -verfeinerung erfolgten mit dem Programmsystem SHELXTL-Plus^[18].

- ^[1] Übersicht: E. Niecke, D. Gudat, Angew. Chem. 1991, 103, 251–270; Angew. Chem. Int. Ed. Engl. 1991, 30, 217–237. Thermostabile 1,2-Additionsprodukte sind bekannt: O. J. Sche-
- [2] rer, H. Conrad, Z. Naturforsch., Teil B, 1978, 33, 467-468.
- [3] E. Niecke, R. Kröher, Angew. Chem. 1976, 88, 758-759; Angew. Chem. Int. Ed. Engl. 1976, 15, 692-693.
- H. Schmidbaur, W. Findeiss, Chem. Ber. 1966, 99, 2187-2196. ^[5] Übersicht: M. Sachez, M.-R. Mazières, L. Lamandé, Phosphe-
- nium Cations in Multiple Bonds and Low Coordination in Phos-

phorus Chemistry (Ed.: M. Regitz, O. J. Scherer), Thieme Verlag, Stuttgart-New York, 1990, S. 129-148.

- [6] H. Nöth, B. Ederer, H. Ederle, *Chem. Ber.* 1992, 125, 2213–2222; E. Niecke, D. Gudat in 31P NMR Spectroscopic Investigations of Low-Coordinated Multiple Bonded PN Systems (Eds.: L. Quin, J. Verkade), Springer Verlag, Berlin, Heidelberg, New York, 1994. S. 159-176. Vgl. hierzu: D. Gonbeau, G. Pfister-Guillouzo, J. Barrans, Can. J. Chem. 1983, 61, 1371-1378.
- ^[7] R. W. G. Wyckhoff, *Crystal Structures*, 2. Aufl., Wiley, New York, **1963**, Bd. 1, S. 108–111.
 ^[8] A. H. Cowley, R. A. Kemp, J. C. Wilburn, *Inorg. Chem.* **1981**,
- 20, 4289-429
- ^[9] A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson, R. Taylor in Structure Correlation (Eds.: H.-B. Bürgi, J. D. Dunitz), VCH Weinheim, **1994**, S. 751–858. ^[10] Vgl. hierzu ebenfalls Lit.^[9].

- ^[11] S. Pohl, Z. Naturforsch., Teil B, 1977, 32, 1342–1343.
 ^[12] O. J. Scherer, N. Kuhn, Chem. Ber. 1974, 107, 2123–2125.
- ^[13] O. J. Scherer, N. Kuhn, J. Organomet. Chem. 1974, 82, C3-C6. ^[14] O. J. Scherer, N. Kuhn, Angew. Chem. 1974, 86, 899-900; Angew. Chem. Int. Ed. Engl. 1974, 13, 811.
- gew. Chem. Int. Eu. Engl. 1977, 19, 611. beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-58 371, der Autorennamen und des Zeitschriftenzitats an-
- gefordert werden.
 ^[16] H. Hope, B. Moezzi, XABS, University of California, Davis, USA; B. Moezzi, Dissertation, University of California, Davis, USA, 1987
- ^[17] N. Walker, D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158-166.
- ^[18] G. M. Sheldrick, SHELXTL-Plus, Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA, 1989.

[238/94]